Search results for "OPEN-CIRCUIT VOLTAGE"

showing 10 items of 63 documents

Performance evaluation and stability of silicide-based thermoelectric modules

2020

Abstract Long-term studies on thermoelectric generators based on N-type magnesium silicide (Mg2.01Si0.49Sn0.5Sb0.01) and P-type higher manganese silicide (Mn0.98Mo0.02Si1.73Ge0.02) materials are presented, in the operating temperature range of 200 °C–400 °C. Emphasis is put on the performance and reliability of the current collector configuration, especially on the hot side of the module, and on the thermomechanical stresses that are created during operation and lifetime testing as a result of large temperature gradients experienced across the thermoelectric legs. With silver (Ag) paste as contact material, the long term-stability of the uni-couples was carried out on non-metalized legs and…

010302 applied physicsMaterials scienceOpen-circuit voltage02 engineering and technologyInternal resistanceCurrent collector021001 nanoscience & nanotechnologyMagnesium silicide01 natural sciencesIsothermal processVDP::Teknologi: 500::Elektrotekniske fag: 540chemistry.chemical_compoundThermoelectric generatorchemistry0103 physical sciencesThermoelectric effectSilicideComposite material0210 nano-technology
researchProduct

How Gettering Affects the Temperature Sensitivity of the Implied Open Circuit Voltage of Multicrystalline Silicon Wafers

2019

The temperature sensitivity of the open circuit voltage of a solar cell is mainly driven by changes in the intrinsic carrier concentration, but also by the temperature dependence of the limiting recombination mechanisms in the cell. This paper investigates the influence of recombination through metallic impurities on the temperature sensitivity of multicrystalline silicon wafers. Spatially resolved temperature dependent analysis is performed to evaluate the temperature sensitivity of wafers from different brick positions before and after being subjected to phosphorus diffusion gettering. Local spatial analysis is performed on intra-grain areas, dislocation clusters and grain boundaries. Lar…

010302 applied physicsMaterials scienceOpen-circuit voltagebusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionGetterlaw0103 physical sciencesSolar cellOptoelectronicsGrain boundaryWaferSensitivity (control systems)Dislocation0210 nano-technologybusinessRecombination2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)
researchProduct

Fabrication and characterization of low cost Cu 2 O/ZnO:Al solar cells for sustainable photovoltaics with earth abundant materials

2016

Abstract The low cost electrodeposition method was used to grow Cu2O thin films and experimentally determine the optimal absorber layer thickness. Raman scattering studies indicate the presence of solely crystalline Cu2O and SEM images show that the thin films consist of grains with a pyramidal shape. The influence of the thickness of the light absorbing Cu2O layer on the basic characteristic of the heterojunction and their properties have been investigated using reflectivity, current–voltage (J–V), capacitance–voltage (C–V) and the external quantum efficiency (EQE) measurements. The depletion layer, the charge collection length of the minority carrier, and reflectivity are the main factors…

010302 applied physicsMaterials scienceRenewable Energy Sustainability and the Environmentbusiness.industryOpen-circuit voltageHeterojunction02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialslaw.inventionOpticsDepletion regionlawPhotovoltaics0103 physical sciencesSolar cellOptoelectronicsQuantum efficiencyThin film0210 nano-technologybusinessShort circuitSolar Energy Materials and Solar Cells
researchProduct

A summary of expressions for central performance parameters of high efficiency solar cell concepts

2019

This work reviews expressions for central performance parameters of various types of PV-concepts when operating at the radiative limit. Some new expressions not published elsewhere are also included. The performance parameters include the short circuit current density, the open circuit voltage, the maximum power density and the optimal voltage. The cell concepts include single junction cells, cells optically coupled to up- and down-converters, intermediate band solar cells and a couple of implementations of multijunction devices. The Lambert W function is used to express the maximum power density.

010302 applied physicsPhysicsbusiness.industryOpen-circuit voltageSemiconductor device modeling02 engineering and technology021001 nanoscience & nanotechnologySolar energyTopology01 natural scienceslaw.inventionsymbols.namesakelawLambert W function0103 physical sciencesSolar cellsymbolsEnergy transformation0210 nano-technologybusinessShort circuitVoltage2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)
researchProduct

Optimization of the enzyme power source for a nano drug delivery system fuelled by glucose in blood plasma

2019

A unique in vivo electrical pulse generator to improve membrane permeability for drugs and simultaneously facilitate self-powered nano devices for nano drug delivery systems (NDDS) was identified. The use of an unsupported biological catalyst component of the power supply was aimed at the NDDS instead of a conventional membrane electrode assembly (MEA). Self-powered carriers of drugs and prodrugs with improved controlled release capability to target areas using substrate available in biological matrices such as glucose in blood is envisaged. The experimental application implemented prototype designed chambers allowing the entry of premixed precursors and low ohm resistance due the absence o…

0106 biological sciencesMaterials sciencebiologyMembrane permeabilityOpen-circuit voltageDiffusionMembrane electrode assemblySubstrate (chemistry)Proton exchange membrane fuel cell02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesControlled releaseChemical engineering:NATURAL SCIENCES:Physics [Research Subject Categories]biology.proteinGlucose oxidase0210 nano-technology010606 plant biology & botanyIOP Conference Series: Materials Science and Engineering
researchProduct

Comparison between textured SnO2:F and Mo contacts with the p-type layer in p–i–n hydrogenate amorphous silicon solar cells by forward bias impedance…

2013

Abstract In this paper we compare the performance of the textured SnO2:F and Mo contacts with the p-type layer in p–i–n hydrogenate amorphous silicon (a-Si:H) solar cells. We use standard current–voltage (I–V) electrical characterization methods coupled with forward bias small signal impedance analysis. We show the efficacy of this technique to determine the effective carrier lifetime in photovoltaic cells. We show that such effective lifetimes are indeed directly connected to the respective dark diode saturation currents. We also find that the effective lifetime is constant with the temperature in the 0–70 °C range and it is significantly better for the solar cell with Mo diode contact. Th…

Amorphous siliconMaterials scienceRenewable Energy Sustainability and the EnvironmentOpen-circuit voltagebusiness.industryPhotovoltaic systemImpedance measurementCarrier lifetimelaw.inventionEffective carrier lifetimea-Si:H p–i–n solar cellchemistry.chemical_compoundchemistrylawSolar cellOptoelectronicsGeneral Materials SciencebusinessElectrical impedanceSaturation (magnetic)DiodeSolar Energy
researchProduct

Li-ion Battery Modeling and State of Charge Estimation Method Including the Hysteresis Effect

2019

In this paper, a new approach to modeling the hysteresis phenomenon of the open circuit voltage (OCV) of lithium-ion batteries and estimating the battery state of charge (SoC) is presented. A characterization procedure is proposed to identify the battery model parameters, in particular, those related to the hysteresis phenomenon and the transition between charging and discharging conditions. A linearization method is used to obtain a suitable trade-off between the model accuracy and a low computational cost, in order to allow the implementation of SoC estimation on common hardware platforms. The proposed characterization procedure and the model effectiveness for SoC estimation are experime…

Battery (electricity)Energy storage systemsComputer Networks and CommunicationsComputer scienceEnergy storage system020209 energylcsh:TK7800-8360Battery modeling02 engineering and technologyEnergy storageControl theoryLinearizationSoC estimation0202 electrical engineering electronic engineering information engineeringCoulombElectrical and Electronic EngineeringOpen-circuit voltagelcsh:Electronics020208 electrical & electronic engineeringHysteresisTransducerState of chargeHardware and ArchitectureControl and Systems EngineeringHysteresis effectSignal ProcessingSettore ING-INF/07 - Misure Elettriche E ElettronicheElectronics
researchProduct

Odorant binding changes the electrical properties of olfactory receptors at the nanoscale

2021

Olfactory receptors (ORs) comprise the largest multigene family in the vertebrates. They belong to the class A (rhodopsin-like) family of G protein-coupled receptors (GPCRs), which are the most abundant membrane proteins, having widespread, significant roles in signal transduction in cells, and therefore, they are a major pharmacological target. Moreover, ORs displayed high selectivity and sensitivity towards odorant detection, a characteristic that raised the interest for developing biohybrid sensors based on ORs for the detection of volatile compounds. The transduction of odorant binding into cellular signaling by ORs is not well understood and knowing its mechanism would enable developin…

Cell signalingOlfactory receptorOdorant bindingChemistryolfactory receptorodorant bindingImpedance parameterslaw.invention[SDV.AEN] Life Sciences [q-bio]/Food and Nutritionmedicine.anatomical_structureopen-circuit voltagelawelectrochemical scanning tunneling microscopy (EC-STM)impedance[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologymedicineBiophysicsScanning tunneling microscope[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]ReceptorTransduction (physiology)[SDV.AEN]Life Sciences [q-bio]/Food and NutritionElectrochemical potential
researchProduct

Alternating current electrogravimetry of copper electrodissolution in a sulfuric acid solution

2017

Abstract Copper electrodissolution processes have been studied by means of electrochemical impedance spectroscopy and ac-electrogravimetry (mass impedance). During ac-electrogravimetry acquisition, mass decreases or increases due to the electrodissolution or the electrodeposition of copper, respectively. As a result, this continuous mass drift makes impossible obtaining a true ac-electrogravimetry response unless a numerical correction was applied. It has been compared the electrochemical behavior of copper layers previously treated and other freshly deposited on the gold electrode of the quartz crystal microbalance. The simultaneous analysis of both impedance functions has allowed separati…

ChemistryOpen-circuit voltageGeneral Chemical EngineeringInorganic chemistryAnalytical chemistrychemistry.chemical_element02 engineering and technologyQuartz crystal microbalance010402 general chemistry021001 nanoscience & nanotechnologyElectrochemistry01 natural sciencesCopper0104 chemical sciencesDielectric spectroscopyElectrogravimetryElectrodeElectrochemistry0210 nano-technologyElectrical impedanceElectrochimica Acta
researchProduct

Organoboron Polymers for Photovoltaic Bulk Heterojunctions

2010

We report on the application of three-coordinate organoboron polymers, inherently strong electron acceptors, in flexible photovoltaic (PV) cells. Poly[(1,4-divinylenephenylene)(2,4,6-triisopropylphenylborane)] (PDB) has been blended with poly(3-hexylthiophene-2,5-diyl) (P3HT) to form a thin film bulk heterojunction (BHJ) on PET/ITO substrates. Morphology may be modulated to give a high percentage of domains (10-20 nm in size) allowing exciton separation. The photoelectric properties of the BHJs in devices with aluminium back electrodes were imaged by light beam induced current (LBIC) and light beam induced voltage (LBIV) techniques. Open circuit voltages, short circuit currents and overall …

Conductive polymerMaterials sciencePolymers and PlasticsOrganic solar cellOpen-circuit voltagebusiness.industryOrganic ChemistryHeterojunctionPhotoelectric effectPolymer solar cellPolymer chemistryMaterials ChemistryOptoelectronicsThin filmbusinessShort circuitMacromolecular Rapid Communications
researchProduct